The gastronomic center ultimately mirrors the concept of a watering hole in the Savannah. Through food, cultural exchange, and the opportunity to learn from each other, the gastronomic center brings people together to create a community of people with diverse stories and experiences. With a sustainable focus, the building provides a welcoming environment for people to engage in community and work together, with the hope that future generations can be encouraged and inspired to learn, share, and grow in the same way.
LOGISTICS PLAN

PHASE TWO
- Designed a new HVAC system to account for our rooftop garden. Building dimensions and function were used to determine size of system needed. Ductwork sizes were calculated to accommodate ductwork for new mechanical units.
- We worked with the construction group to estimate structural cost. We calculated the tons of steel needed and provided this information to the construction team. We also reinforced the existing beams with steel T-sections and plates to support loads from a new roof garden. We did a quantity take-off and gave the construction group the information to support loads from a new roof garden. We did a quantity take-off and gave the construction group the information to support loads from a new roof garden.
- We calculated the ratio of the demand to the capacity of the existing building. We ran the model and determined there was too much demand. We increased the capacity of the existing building.

PHASE THREE
- We modeled the existing building in RAM Structural System and applied dead loads. We used AISC and ASCE 7-10 to determine superimposed dead loads and live loads. We calculated the forces acting on the building and determined the load path. We chose steel with composite deck to allow for flexibility in programming.
- The new "Share" structure is composed of two semicircular-shaped buildings. The braced frames were used for lateral support against wind loads. Because braced frames were chosen, the lateral system for the "Share" structure was made up of steel braced frames. The braced frames were chosen to provide stability against wind loads.
- The "Grow" structure is a series of steel tube columns with cone shaped openings. The columns are designed to allow for access to the greenhouse on the roof. The funnel structure was designed to allow for access to the greenhouse on the roof. The funnel structure was designed to allow for access to the greenhouse on the roof. The funnel structure was designed to allow for access to the greenhouse on the roof.
- The "Learn" structure is an existing five-story building made of steel beams and columns with load-bearing concrete masonry walls and concrete floor slabs. We continued to use the elevator in this phase, similar to the last phase.
- We continued to use the elevator in this phase, similar to the last phase. In this phase the road for trucks is the same as the previous phase. The loading dock is also north of its previous location. In this phase the road for trucks is the same as the previous phase. The loading dock is also north of its previous location.
- The crane moved more towards the west boundary of our site to better allow for the movement of materials.
- The crane moved more towards the west boundary of our site to better allow for the movement of materials.
- The office and worker’s amenities remained the same as the previous phase. The office and worker’s amenities remained the same as the previous phase.
- This phase is entirely plant life and the new water collection system. In this phase the location of the field office and worker amenities remained the same as the previous phase. The office and worker’s amenities remained the same as the previous phase.
- This phase is entirely plant life and the new water collection system. In this phase the location of the field office and worker amenities remained the same as the previous phase. The office and worker’s amenities remained the same as the previous phase.
- We faced the challenge of having to move the field office to the finished existing building. This phase is entirely plant life and the new water collection system. In this phase the location of the field office and worker amenities remained the same as the previous phase.
- We faced the challenge of having to move the field office to the finished existing building. This phase is entirely plant life and the new water collection system. In this phase the location of the field office and worker amenities remained the same as the previous phase.

CONSTRUCTION
- We modeled the existing building in RAM Structural System and applied dead loads. We used AISC and ASCE 7-10 to determine superimposed dead loads and live loads. We calculated the forces acting on the building and determined the load path. We chose steel with composite deck to allow for flexibility in programming.
- The new "Share" structure is composed of two semicircular-shaped buildings. The braced frames were used for lateral support against wind loads. Because braced frames were chosen, the lateral system for the "Share" structure was made up of steel braced frames. The braced frames were chosen to provide stability against wind loads.
- The "Grow" structure is a series of steel tube columns with cone shaped openings. The columns are designed to allow for access to the greenhouse on the roof. The funnel structure was designed to allow for access to the greenhouse on the roof. The funnel structure was designed to allow for access to the greenhouse on the roof. The funnel structure was designed to allow for access to the greenhouse on the roof.
- The "Learn" structure is an existing five-story building made of steel beams and columns with load-bearing concrete masonry walls and concrete floor slabs. We continued to use the elevator in this phase, similar to the last phase.
- We continued to use the elevator in this phase, similar to the last phase. In this phase the road for trucks is the same as the previous phase. The loading dock is also north of its previous location. In this phase the road for trucks is the same as the previous phase. The loading dock is also north of its previous location.
- The crane moved more towards the west boundary of our site to better allow for the movement of materials.
- The crane moved more towards the west boundary of our site to better allow for the movement of materials.
- The office and worker’s amenities remained the same as the previous phase. The office and worker’s amenities remained the same as the previous phase.
- This phase is entirely plant life and the new water collection system. In this phase the location of the field office and worker amenities remained the same as the previous phase. The office and worker’s amenities remained the same as the previous phase.
- We faced the challenge of having to move the field office to the finished existing building. This phase is entirely plant life and the new water collection system. In this phase the location of the field office and worker amenities remained the same as the previous phase. The office and worker’s amenities remained the same as the previous phase.

MECHANICAL
- Designed a new HVAC system to account for our rooftop garden. Building dimensions and function were used to determine size of system needed. Ductwork sizes were calculated to accommodate ductwork for new mechanical units.
- We worked with the construction group to estimate structural cost. We calculated the tons of steel needed and provided this information to the construction team. We also reinforced the existing beams with steel T-sections and plates to support loads from a new roof garden. We did a quantity take-off and gave the construction group the information to support loads from a new roof garden. We did a quantity take-off and gave the construction group the information to support loads from a new roof garden.
- We calculated the ratio of the demand to the capacity of the existing building. We ran the model and determined there was too much demand. We increased the capacity of the existing building.

STRUCTURES
- We modeled the existing building in RAM Structural System and applied dead loads. We used AISC and ASCE 7-10 to determine superimposed dead loads and live loads. We calculated the forces acting on the building and determined the load path. We chose steel with composite deck to allow for flexibility in programming.
- The new "Share" structure is composed of two semicircular-shaped buildings. The braced frames were used for lateral support against wind loads. Because braced frames were chosen, the lateral system for the "Share" structure was made up of steel braced frames. The braced frames were chosen to provide stability against wind loads.
- The "Grow" structure is a series of steel tube columns with cone shaped openings. The columns are designed to allow for access to the greenhouse on the roof. The funnel structure was designed to allow for access to the greenhouse on the roof. The funnel structure was designed to allow for access to the greenhouse on the roof. The funnel structure was designed to allow for access to the greenhouse on the roof.
- The "Learn" structure is an existing five-story building made of steel beams and columns with load-bearing concrete masonry walls and concrete floor slabs. We continued to use the elevator in this phase, similar to the last phase.
- We continued to use the elevator in this phase, similar to the last phase. In this phase the road for trucks is the same as the previous phase. The loading dock is also north of its previous location. In this phase the road for trucks is the same as the previous phase. The loading dock is also north of its previous location.
- The crane moved more towards the west boundary of our site to better allow for the movement of materials.
- The crane moved more towards the west boundary of our site to better allow for the movement of materials.
- The office and worker’s amenities remained the same as the previous phase. The office and worker’s amenities remained the same as the previous phase.
- This phase is entirely plant life and the new water collection system. In this phase the location of the field office and worker amenities remained the same as the previous phase. The office and worker’s amenities remained the same as the previous phase.
- We faced the challenge of having to move the field office to the finished existing building. This phase is entirely plant life and the new water collection system. In this phase the location of the field office and worker amenities remained the same as the previous phase. The office and worker’s amenities remained the same as the previous phase.